

The SpreadStation Powder Analyzer measures the spreadability of powders by actually spreading powders in a layer and then analyzing the properties of the layer.

SpreadStation with solid build plate and four spreaders and scrapers

Powder is loaded into a spreading device that includes a feeder and a spreading surface. The spreading device rests on the build surface and has an adjustable gap at the bottom to control the powder layer thickness. The build surface is rotated to create linear motion between the spreading device and the build surface. This linear motion spreads the powder in a layer on the build surface. Images of the created layer are captured and the thickness of the layer is measured using a laser or capacitive distance sensor. The layer is then removed from the build surface by a scraping blade and is weighed.

The SpreadStation can be equipped with up to four spreaders and the build surface can be a solid surface or a powder bed. Spreading speed is programmable from 1 to 300 mm/s. Spreading layer thickness can be set from 20 micrometers to 2 millimeters. The build area can be purged and heated to 250C. Samples are loaded into the spreader through a trap door using a bottom emptying sample cup.

Each spreader can be equipped with various powder feeders and spreaders to study different printer parameters. Custom spreaders can also be fabricated to match specific printers.

Flat Spreader rigid or flexible

Round Spreader

Rotating Roller adjustable rate & direction

Angled Feeder adjustable angle and feeding gap

Straight Feeder adjustable width and feeding gap

Pressure Feeder adjustable pressure, width and feeding gap

Layers created by the SpreadStation are analyzed using three measurement systems:

Weighting System

The mass of powder in the spread layer is measured using a load cell.

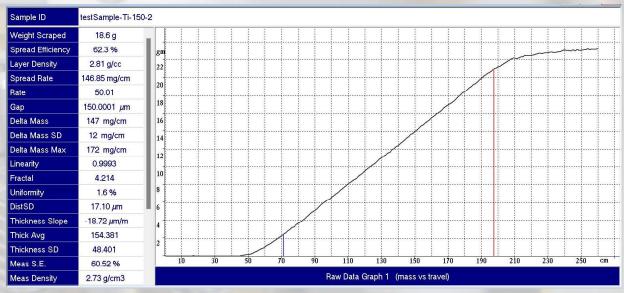
Measurement

Spreading Efficiency Layer Density Layer Uniformity

Laser Distance System

The thickness of the spread layer is measured using a laser or capacitance sensor.

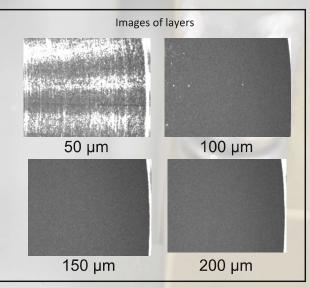
Measurement


Layer Thickness
Layer Uniformity

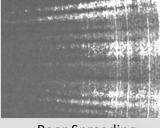
Imaging System

Images of the spread layer are taken using digital cameras and LED lighting.

Measurement

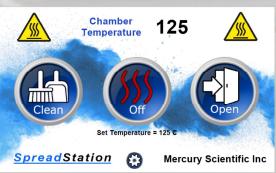

Build area coverage Channeling detection Wave detection

PC software screen shot


Spreadability versus level height 50 mm/s spreader speed

Level Height	Spreading Efficiency	Layer Density	Spread Rate	Layer Thickness
50 µm	48.0%	3.84 g/cm ³	66 mg/cm	61 µm
100 μm	48.2%	3.86 g/cm ³	134 mg/cm	112 µm
150 µm	49.3%	3.95 g/cm ³	206 mg/cm	158 µm
200 µm	52.9%	4.24 g/cm ³	297 mg/cm	202 µm

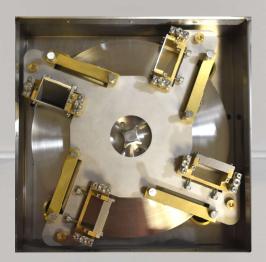
Good Spreading Powder



Poor Spreading Powder

Sample	Spreading Efficiency	Layer Density	Spread Rate	Layer Thickness
Good Spreading	38.3%	3.29 g/cm ³	174 mg/cm	118 µm
Poor Spreading	21.5%	1.85 g/cm ³	97 mg/cm	72 µm

Counter-rotating roller


SpreadStation TouchScreen Display

Spreader & Scraper

Polymer spread with a counter-rotating roller

Solid build plate with 4 spreaders

Stainless Steel spread with a flat spreader

Specifications

Layer thickness: 20 to 2000 μm Spreading rate: 10 to 300 mm/s Build surface: solid or powder bed

Temperature: ambient to 250C (optional)

Purging: Optional Cameras: 4 maximum

Thickness Sensor: Laser or Capacitance

Voltage: 100-240V,

Current: Control 3 Amps, Temp Option 6 Amps

Software: Windows 11

Ports: 1 USB control, 1 USB per Camera

Dimensions: 17"W x 13"L x 17"H (43 x 33 x 43 cm)

Weight: 50 lbs (23 kg)

Mercury Scientific Inc. manufacturers instruments that test powder properties in Newtown CT USA.

Products include the Revolution Powder Analyzer for dynamic flow measurements and the Evolution

Powder Tester and Volution Shear tester for static flow (Unconfined Yield Strength) measurements.

Available in the UK: 01582 704807 www.meritics.com info@meritics.com