Active Pharmaceutical Ingredients in AIDS Drugs: Using NMR
Relaxation to Determine the Wetted Surface Area of Suspensions
Reducing the particle size of materials
possessing poor solubility characteristics
can be an avenue to substantially
increasing the total surface area of the
material. This concept can be illustrated
when formulating drug products that contain
active pharmaceutical ingredients (APIs).
A larger surface area allows for much
faster dissolution of APIs and, thereby, an
increase in bioavailability, regardless of the
route of administration. This is of obvious
importance in manufacturing because low
active bioavailability of drugs can lead to
inefficient treatment and risk of toxic side
effects. Any increase in efficacy can reduce
the potential toxicity because less drug
substance is needed, which also serves
to reduce costs. There is also a growing
body of evidence that, specifically with
nanoparticulate API materials, it is the
particle surface area and not particle size
that is the defining metric that controls
toxicological interaction. This explains
the recent drive to develop reformulations
based on nanotechnology.
So, what technique can make fast, reliable,
direct measurements of wetted surface
area in any suspension and, particularly,
nanosize API dispersions? Nuclear magnetic
resonance (NMR) relaxation, which is the
basis for Mageleka’s MagnoMeter XRS™,
can directly measure the wetted surface
area of any particulate suspension.