Customise Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Industrial
Applications
Micropore Adsorption

IUPAC recommendation consequences for micropore adsorption studies

The IUPAC-report “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution” contains essential guidelines for obtaining and interpreting experimental data by means of gas adsorption [1]. This includes an extended classification of physisorption isotherms and hysteresis types. Furthermore, it takes account of scientific and technological progress made in the characterization of porous materials during the last 30 years. A key topic within that report is the recommendation to employ argon at the boiling point temperature of liquid argon (87 K) for micropore analysis. Argon atoms provide distinct advantages over nitrogen molecules for gas sorption analyses, including the following:

  • Unlike nitrogen, argon has no quadrupole moment. Thus, using argon as adsorbate eliminates specific chemical interactions with polar/ionic surface sites.
  • As a result, argon physisorption isotherms provide much more reliable fingerprints of the interactions modeled by today’s most advanced DFT-techniques for pore size characterization.
  • Argon sorption analyses at its boiling point 87 K can be significantly faster than conventional N2 77 K experiments, because the filling of a pore size can occur much more readily at higher relative pressures.